
 N
news

august 2011  |   vol.  54  |   no.  8  |   communications of the acm     13

I
m

a
g

e
s

 c
o

u
r

t
e

s
y

 o
f

 M
a

r
t

in


 M
ü

l
l

e
r

, 
Univ





e

r
s

i
t

y
 o

f
 A

l
b

e
r

t
a

A New Benchmark for 
Artificial Intelligence
Computers are unable to defeat the world’s best Go players,  
but that may change with the application of a new strategy  
that promises to revolutionize artificial intelligence.

I
n 1997,  when IBM’s Deep Blue 
beat world champion chess 
player Garry Kasparov in a five-
game match, the media her-
alded the beginning of a new 

era in artificial intelligence. While the 
event undeniably marked a noteworthy 
milestone in the history of comput-
ers, and has served as an enduringly 
fresh metaphor for the possibilities of 
technology, what became clear in the 
years following the event is that many 
classical programming strategies for 
AI do not work well when applied to 
more complex applications. One such 
application that has emerged as a new 
benchmark for those conducting re-
search in AI is the board game Go.

Go has proved to be extremely diffi-
cult for computers to master. To date, 
no computer has beaten a profession-
al Go player on the 19×19 board in an 
even match. On the surface, Go might 
appear to be much simpler than chess, 
with players alternating placement 
of black and white pieces on a square 
board to capture more territory than 
their opponent by game’s end. But 
the simplicity of Go’s rules are deceiv-
ing. From a computer’s perspective, 
Go is much more complex than chess. 

Instead of dozens of branching move-
ment combinations to evaluate as in 
chess, the branching search trees for 
Go may consist of hundreds of op-
tions for each move. For the first two 
Go moves alone, for example, more 
than 100,000 lines of play are possible, 
making options for each player’s turn 
highly open-ended.

The approach that has proved in re-
cent years to be the most likely path to 
victory for computers in Go is a meth-

od called Monte Carlo Tree Search, or 
MCTS. Only a few years ago, computers 
couldn’t compete well even with ama-
teur Go players, but the use of MCTS 
has resulted in software that can play 
near the level of the best professional 
players on the 9×9 Go board, and can 
even provide a decent game for sea-
soned players on the 19×19 board. The 
demonstrated strength of MCTS ap-
plied to Go has drawn attention from 
many areas of computer science, with 

Go boards showing a sample of how the Fuego software calculates board positions using 
Monte Carlo Tree Search. The size of the black or white square on each point indicates  
the percentage of how often that point belongs to each player at the end of a round of 
simulated moves. 

Science  |  doi:10.1145/1978542.1978548	 Kirk L. Kroeker



14    communications of the acm    |   august 2011  |   vol.  54  |   no.  8

news

I
m

a
g

e
s

 c
o

u
r

t
e

s
y

 o
f

 I
n

r
i

a
/Cn


r

s
/L

r
i

 (
F

r
a

n
c

e
),

 N
UT


N

 (
T

a
iw


a

n
),

 a
n

d
 S

a
r

a
 (

N
e

t
h

e
r

l
a

n
d

s
)

continues to search. Currently, the 
most effective MCTS algorithms bal-
ance lengthy deep searches for win-
ning moves against simulated explora-
tions of new positions.

One scientist doing work to improve 
the capabilities of MCTS is Martin Mül-
ler, a professor in the department of 
computer science at the University of 
Alberta. Müller is co-author of Fuego, 
a Go program that routinely places in 
the top ranks at the annual Computer 
Games Olympiad and was the first pro-
gram to beat a professional Go player 
in an official game on the 9×9 board. 
Müller has worked on Go for more than 
20 years, dating back to his Ph.D. dis-
sertation at ETH Zürich, where he used 
combinatorial game theory to solve 
endgame problems.

Now using MCTS, he says the meth-
od promises to push the boundaries of 
what is possible in AI. The Fuego MCTS 
framework, for example, has already 
been used in many other applications. 
“As a long time computer Go research-
er and Go player, I enjoy gaining new 
insights from the program’s play as it 
becomes stronger than I am,” he says. 
“This has happened on the 9×9 board, 
where Fuego has achieved some victo-
ries against top-level human competi-
tion.” But the ultimate challenge, he 
says, is to scale the program so that it 
can beat humans on the 19×19 board. 

MCTS’s Superior Approach
Müller points out that while it has been 
somewhat of a mystery why MCTS has 
proved superior to earlier approaches, 
researchers are beginning to under-
stand why MCTS methods can be more 
successful in hard domains. “For me, 
the main reason is that they do not re-
quire an evaluation function for arbi-
trary game positions,” he says. “The 
simulations until the end of the game 
in MCTS make evaluating the best pos-
sible positions much easier.”

Even so, the best Go programs are 
still weak in what Müller calls local situ-
ations. Massive parallelization is be-
ing used to sidestep this problem, but 
Müller says it is currently unrealistic to 
expect supercomputers to be able to re-
solve a large number of local situations 
simultaneously within a single global 
search. “Simply scaling to more and 
faster processors will not be enough 
with current techniques,” he says. “I 
think we need one or two further break-
through ideas in algorithms.”

That breakthrough, Müller sug-
gests, might come from MCTS being 
combined with other methods. For 
example, most strong algorithms are 
inherently sequential, meaning the re-
sults of all simulations must be derived 
before determining which simulations 
are run next. MCTS algorithms can 
sidestep this process with a technique 
called virtual loss, which operates on 
the assumption that simulations that 
have been started in parallel, but have 
not yet completed, will lead to a loss. 
While this technique is fast because it 
does not search the same simulations 
repeatedly, it is less effective than se-
quential search to resolve local situ-
ations, and it reaches a performance 
ceiling, even when parallelized.

What might lead to solving this prob-
lem, says Müller, is a method that can 
supplement global search with a set of 
effective local searches. “I believe we 
need local MCTS as well, and to inte-
grate the results with global search,” 
says Müller. “This is a huge technical 
challenge, but if successful, it would 
provide a way to scale up much better.”

As for applying MCTS to other do-
mains, Müller says the main challenge 
is to overcome the method’s known 
limitations, particularly in cases where 
promising states are sparse, making 
them difficult to discover, or where 

researchers now showing interest in 
applying MCTS techniques to other ap-
plications and domains.

Brute force methods, such as the 
classic alpha-beta search technique, 
are far too slow for Go analysis because 
of the game’s open-ended nature. But 
with an MCTS algorithm, essentially a 
form of statistical sampling, it is pos-
sible to quickly consider all possible 
moves on the board, then simulate 
a set of random games. If a winning 
combination turns up in the majority 
of those simulated games, the MCTS 
algorithm considers that combination 
a good one. Otherwise, the algorithm 

The Huygens supercomputer running MoGo software, which claimed the first nine-stone 
handicap victory against a professional Go player on a 19x19 board. During the official 
match, the supercomputer used 800 processors to power MoGo at a speed approximately 
1,000 times faster than IBM’s Deep Blue.

Currently, the most 
effective MCTS 
algorithms balance 
lengthy deep searches 
for winning Go moves 
against simulated 
explorations  
of new positions.



news

augu 2011  |   vol.  54  |   no.  8  |   ommuniations of the am     15

management is my favorite application 
because of its strong ecological and 
economic importance,” he says. “We 
would never have been given funding 
for working on power-plant manage-
ment without the publicity provided by 
the work on Go.”

In his most recent effort along these 
lines, Teytaud is working directly with 
Artelys, a company that specializes in 
power-plant management, to develop a 
system that can respond intelligently to 
changes in power demand and outages. 
Managing power allocation, says Tey-
taud, is a problem similar to Go, where 
an opponent’s move may be likened to 
the failure of a plant, the computer’s 
response likened to switching other 
plants on or off, and the territory occu-
pied at the end of a Go match likened to 
the ecological or economic benefit de-
rived from proper power allocation.

Besides being useful for industrial 
applications, MCTS techniques devel-
oped for Go appear to be well suited 
to multiplayer games. An MCTS-based 
AI application that Teytaud developed 
for the massively multiplayer card 
game UrbanRivals was ranked in the 
top 1% in a round of matches consist-
ing of some 9,000 players. “The suc-

cess of this application illustrates that 
the MCTS method can deal with par-
tially hidden information,” he says. 
“There’s no hidden information in Go, 
so this application to card games is im-
portant.”

As for whether a computer will 
be able to achieve victory over a top-
ranked Go player in an even match, 
Teytaud says he remains skeptical 
about it happening soon. “It will prob-
ably include some abstract thinking, 
much more than for chess,” he says. 
Like Teytaud, Müller says he is uncer-
tain whether or when the technique 
will be used to beat a professional Go 
player on the 19×19 board. “I have no 
crystal ball,” he says, “but I hope to see 
at least one more fundamental break-
through in the next decade.”

Even if a landmark victory—on the 
order of Deep Blue over Kasparov—is 
not on the horizon for MCTS and the 
game of Go, the popularity of MCTS 
likely will continue to grow in domains 
suited to heuristic search methods, 
such as industrial-optimization prob-
lems, multiplayer games, and other 
applications that stand to benefit from 
more effective AI strategies.

Further Reading

Arneson, B., Hayward, B., and Henderson, P. 
Monte Carlo tree search in hex, IEEE 
Transactions on Computational Intelligence 
and AI in Games 2, 4, Dec. 2010.

Chaslot, G.M., Winands, M.H., and Herik, H.J. 
Parallel Monte-Carlo tree search, 
Proceedings of the Sixth International 
Conference on Computers and Games, 
Beijing, China, Sept. 29–Oct. 1, 2008.

Enzenberger, M., Müller, M.,  
Arneson, B., and Segal, R. 
Fuego: An open-source framework for 
board games and Go engine based on 
Monte-Carlo tree search, IEEE Transactions 
on Computational Intelligence and AI in 
Games 2, 4, Dec. 2010.

Rimmel, A., Teytaud, O., Lee, C.S.,  
Yen, S.J., Wang, M.H., and Tsai, S.R. 
Current frontiers in computer Go, IEEE 
Transactions on Computational Intelligence 
and AI in Games 2, 4, Dec. 2010.

Winands, H.M., Bjornsson, Y., and Saito, J. 
Monte Carlo tree search in lines of action, 
IEEE Transactions on Computational 
Intelligence and AI in Games 2, 4, Dec. 
2010.

© 2011  0001-0782/11/08 $10.00 

planning problems have extremely 
long solutions. In these cases, hybrid 
approaches, such as limited-length 
simulations followed by classical evalu-
ations, might turn out to be the most ef-
fective strategies. “We will need to un-
derstand how classical techniques and 
MCTS can best be combined,” he says.

Another researcher working on ap-
plying MCTS to Go and other domains 
is Olivier Teytaud, a computer scien-
tist at the University of Paris-Sud, and 
coauthor of MoGo, a Go program that 
has won several significant victories 
against human players and other Go 
programs. Teytaud’s early work fo-
cused on planning for industrial prob-
lems, but he shifted his attention to Go 
and MCTS several years ago. Like Mül-
ler, Teytaud is dedicated to improving 
the capabilities of MCTS in Go, but 
with an eye toward applying the ideas 
to other applications and domains.

“It’s clear that curing cancer, reduc-
ing pollution, or automating tedious 
tasks are more important than playing 
the game of Go,” he says. “But games are 
a very clear challenge, providing a great 
test bed for comparing algorithms.”

Teytaud says one of the reasons he 
became interested in MCTS is because 
of its ability to bypass the extrapolation 
problem. Unlike classical approaches 
that attempt to generalize domain 
knowledge to new scenarios, MCTS 
does not attempt to extrapolate. In-
stead, MCTS relies on search-tree sim-
ulations that require minimal domain 
knowledge, making it an attractive op-
tion for problems in AI. However, like 
Müller, Teytaud is focused on how best 
to get MCTS methods to handle local 
situations that would benefit from the 
kind of abstraction that humans can 
do so well.

“We have clearly understood the 
weaknesses of MCTS, and we are try-
ing many different things to solve 
them,” Teytaud says. “But we don’t 
currently know which direction is the 
best to take.”

Progress in ther ields
Despite the current mysteries sur-
rounding MCTS, and no clear way to 
overcome the evident weaknesses of 
the approach, Teytaud says some prog-
ress has been made in applying the 
method to other applications in which 
extrapolation is difficult. “Power-plant 

he main challenge 
of applying C 
to other domains 
is to overcome 
the method’s 
known limitations, 
particularly in cases 
where promising 
states are sparse, 
making them difficult 
to discover, or where 
planning problems 
have extremely  
long solutions,  
says artin üller.

Kirk L. Kroeker works in communications and has written 
extensively about the impact of emerging technologies. 




