
16 communications of the acm | july 2009 | vol. 52 | no. 7

news

image

 C

ourtesy

 of

 M

icrosoft

 R
esearc

h

Technology | doi:10.1145/1538788.1538795	 Kirk L. Kroeker

Toward Native Web Execution
Several software projects are narrowing the performance gap between
browser-based applications and their desktop counterparts. In the process, they’re
creating new ways to improve the security of Web-based computing.

M
ost Internet users do not
expect the performance
of browser-based appli-
cations to be the same
as desktop applications,

which are driven by code created from
high-quality compilers and designed
to run natively at the operating system
(OS) level. However, several ongoing
projects at Google, Microsoft, and oth-
er companies aim not only to close that
performance gap, but also to eliminate
some of the security weaknesses that
have plagued Web browsers since the
early days of the Internet.

For years, the Netscape plug-in API
and Microsoft’s ActiveX have provided
a way to use native code modules as
part of a Web application. Along with
enhanced browser functionality, these
extension technologies provide full ac-
cess to the OS’s file and networking in-
terfaces. But by relying on trust rather
than strong technical measures for
safety, these extension technologies
are vulnerable to social-engineering
attacks in which users are tricked into
permitting malicious operations.

One software project that chal-
lenges this trust model yet still offers
native performance is Xax, developed
at Microsoft Research. Xax separates
native instruction execution from na-
tive OS access, leveraging legacy code
to deliver desktop applications on the
Web. The project’s goal is to incorpo-
rate legacy code into browser-based
applications, which then run at native
performance levels and rely on a secu-
rity mechanism that is more flexible
than language isolation.

“Rather than use a language-based
isolation mechanism, why not instead
use the well-evolved and ubiquitous
memory management unit?” asks re-
searcher Jon Howell, who developed
Xax at Microsoft Research.

Howell and his colleagues at Micro-
soft Research are currently exploring

how a Xax interface can be used to de-
liver not just Web extensions, but all
of a Web application’s content, includ-
ing the rendering functions normally
provided by a browser. Realigning the
client’s role in this way, according to
Howell, will help make browsers more
secure and lead to more flexible ap-
plications that can use new rendering
frameworks without forcing developers
to wait for widespread client adoption.

In theory, it is possible to deliver
a new codec or a variant of an HTML
renderer in Flash or JavaScript. How-
ever, the new code, including all of its

libraries, would need to compile to the
special language and tolerate perfor-
mance penalties. “Being able to deliver
native code to the client loosens the
constraints,” says Howell.

Different Approaches
In contrast to Xax, which relies on the
memory management unit for memory
isolation and a kernel system-call patch
to prevent OS access, Google’s Native
Client takes a different approach. Us-
ing an OS-portable sandbox, Native Cli-
ent relies on x86 segmentation hard-
ware to enforce memory isolation and

Xax running a Mandelbrot set explorer to measure performance overhead. This CPU-bound
benchmark runs as quickly inside the Xax container as when hosted in a native OS process,
nearly 30 times faster than the fastest JavaScript implementations, according to Microsoft.

news

july 2009 | vol. 52 | no. 7 | communications of the acm 17

on a binary validator to isolate the OS
interface, preventing direct access to
the OS and resources such as the file
system and the network.

Despite the different implementa-
tion techniques, the idea behind Xax
and Native Client is similar, according
to Howell. “Let the software use the
processor however it likes,” he says,
“and rely for isolation on a simple bit
of hardware designed to do just that.”

Xax and Native Client are but two of
the software technologies designed to
close the performance gap and strength-
en the security of Web browsers. Sun’s
Java, Microsoft’s Silverlight, and Adobe’s
AIR represent another approach to iso-
lating untrusted modules from OS inter-
faces while narrowing the performance
gap with native execution. Of course, un-
like Xax and Native Client, these applica-
tion frameworks tend to be used mainly
as replacements for the browser-based
application environment.

Another alternative approach that is
gaining popularity is full virtualization.
Systems such as Xen or VMware aren’t
commonly used to deploy Web-based
applications, but that might change
soon. Because virtualization systems
use code-distribution formats based on
native code, they avoid the performance
obstacles of JavaScript and other simi-
lar languages. And to protect native OS
interfaces, they wrap untrusted code
in an entire instance of the OS and run
that on top of simulated hardware.

“The desire is to have some kind
of strong isolation barrier that an at-
tack will not be able to penetrate,” says
Mendel Rosenblum, cofounder of VM-
ware and a computer science professor
at Stanford University. “Hardware-level
virtual machines provide precisely that
high-assurance barrier yet can run ex-
isting browsers at near-native speeds.”

Rosenblum says the computer in-
dustry’s focus on low-level isolation
mechanisms is missing the larger
point about what virtualization layers
can do for performance and security,
especially as the Web evolves from a
document-delivery mechanism into an
ecosystem of interactive applications.
“The ability to run sophisticated code
safely, and with high performance on
the clients, will allow the new applica-
tions running in the cloud to support
the richer, highly interactive interfaces
users are accustomed to,” he says.

In the meantime, despite the prolif-
eration of technologies that aim to side-
step the performance issues associated
with running single-threaded scripts in
browsers, JavaScript remains indisput-
ably popular among developers as the
only viable choice for programming
browsers today. While most believe it
is unlikely that JavaScript performance
will catch up to the speed of native code
execution, both Firefox’s TraceMonkey
and Google’s V8, the JavaScript ren-
dering engine in the Chrome browser,
have received industrywide praise for
narrowing the performance gap.

“One thing we should never lose
sight of is the fact that language virtu-
al machines are not all about straight-
line speed of code and that there are
many moving parts in the system that
need to be balanced against each other,”
says Ivan Posva, a Google software engi-
neer who developed the V8 JavaScript
implementation for Chrome. Still, he
says, V8 has narrowed the gap.

In terms of the next speed increase
that users can expect from JavaScript
rendering engines, Posva says he re-
mains skeptical about the ability of ap-
plication-specific or language-specific
hardware to offer significant improve-
ment. “Currently in V8 there are still
many more optimizations that can be
applied on general-purpose CPUs,” he
says. “I do not think that JavaScript-
oriented hardware support would be a
silver bullet.”

In addition to the performance is-
sue, there remains the matter of secu-
rity. JavaScript running in a browser
opens up the possibility for local se-
curity attacks in which a malicious ap-
plication tries to elevate its privileges.
“Browser designers need to be aware
that the more control we give the third-
party programmers via JavaScript, the
more control somebody malicious
could potentially have,” Posva says.

“This is not a security issue on its own,
but there is a lot more potential control
in modern, high-performance virtual
machines that can be used to exploit
an independent security bug.”

To mitigate these risks, V8 uses a
layered approach with a sandboxed
renderer. “V8 tries to minimize the at-
tack surface by not giving total control
over the generated code for a piece of
JavaScript and by following common
practices such as marking all data non-
executable,” says Posva. “V8 has to en-
sure that the policies set by the binding
layer are followed properly.”

Posva says the performance of V8
will improve regardless of whether it
is embedded in a sandboxed environ-
ment. “We had to make some design
decisions in V8 to allow it being em-
bedded in the sandboxed renderer pro-
cess within Google Chrome,” he says.
“But none of these decisions prevent a
nonsandboxed use of V8, and none of
these decisions had an impact on the
real-world performance of V8.”

That performance versatility might
become increasingly important as
browsers evolve, perhaps even to the
point where they are no longer distin-
guishable from the applications they
run. “In a few years,” says Microsoft’s
Howell, “I don’t think we’ll mean the
same thing by ‘browser’ that we mean
today; we’ll mean much less.” Howell
predicts that most of the functions of
the traditional browser will be rendered
moot, replaced by flexible code linked
directly into the Web sites users visit.

Howell’s prediction amounts to say-
ing that the browser itself will become
the sandbox, more or less a simple iso-
lation framework. “Because Xax has
such a narrow interface, and because
we can compile the browser itself for
the Xax container, you can think of Xax
as a way to virtualize the browser,” says
Howell, who maintains that treating
the host OS as something special is a
short-lived phenomenon.

“As Web applications get richer,
they’re just as important to protect as
the host OS,” he says. “If Web applica-
tions are sandboxed, users can try one
with no risk of exposing everything on
their computer.”

© 2009 ACM 0001-0782/09/0700 $10.00

ull virtualization
is an alternative
approach that is
gaining popularity.

Kirk L. Kroeker works in communications and has written
extensively about the impact of emerging technologies.

